Differentiation Techniques

- Differentiation techniques can be useful if the standard rules are too complicated.
- Implicit differentiation:
 - Often used in situations when you have a curve f(x, y) = k and cannot isolate y.
 - Use chain rule! Remember to add $\frac{dy}{dx}$ when differentiating with respect to y.
 - Chain rule is the basis for implicit differentiation.
 - Solve for $\frac{dy}{dx}$ at the end of all computations.
 - Use with trigonometric identities to differentiate inverse trigonometric functions.
 - \circ Use with the definition of *e* to differentiate logarithmic functions.
 - Use with inverse functions.

• Logarithmic Differentiation

- Most handy when f(x) contains many complicated factors and powers.
- Take the natural log of both sides and simplify function by expanding.
- Divide out a function: If you have a function that is a quotient of polynomials, you can divide out the quotient to make it easier to evaluate instead of using quotient rule.
- Rewrite the function using logarithmic or exponential properties.
 - Logarithms: expand the logarithm and evaluate each term separately. Base change to e if necessary.
 - Exponents: Rewrite in terms of base *e*. Ex: $a^x = e^{x \ln a}$
- Rewrite the function using trigonometric identities and definitions.
 - This can be used to verify the derivatives of secondary trigonometric functions.
- Rewrite hyperbolic functions using exponents.
- Using permutations
 - This can be useful when performing a derivative on a polynomial repeatedly.

$$\circ \quad \frac{d^n}{dx^n} x^m = {\binom{m}{p_n}} x^{m-n}$$
$$\circ \quad \frac{d^n}{dx^n} x^n = n!$$

Further notes:

- Logarithmic differentiation can be easily used to verify the product and quotient rules.
- The rules involving taking the n^{th} derivative on a polynomial involving permutations can be empirically observed and proven using mathematical induction.